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Stationary reflection

Definition
Let B be an ordinal of uncountable cofinality.
1 S C B is stationary in B if SN C # () for every club C C S.
2 If S is a stationary subset of B and o < 8 has uncountable
cofinality, then S reflects at o if S N« is stationary in a.
3 If S is a stationary subset of 3, then S reflects if there is
a < B such that S reflects at a.

4 If K is a cardinal of uncountable cofinality, Refl(x) holds if
every stationary subset of k reflects.

If k < X are infinite cardinals, with Kk regular, then
S ={a < \|cf(a) =k}

Remark
If S C S} and S reflects at 3, then cf(B) > k. Thus, if k is
regular and S C S,’f, then S does not reflect.
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Classical results

Theorem
If Ok holds, then, for every stationary S C k™, there is a
stationary T C S that does not reflect.

Theorem (Jensen)

If V =L and k is a regular, uncountable cardinal, then Refl(k)
holds iff k is weakly compact.

Theorem (Solovay)

If w is a singular limit of supercompact cardinals, then Refl(u™)
holds.

Theorem (Magidor)

If (kn | N < w) is an increasing sequence of supercompact
cardinals, then there is a forcing extension in which kK, = Y41 for
every n < w and Refl(R,+1) holds.
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Square-bracket partition relations

Definition

1 If X is an infinite, regular cardinal and S C X is stationary, we
say S reflects at arbitrarily high cofinalities if, for every
regular kK < X, there is 3 € Sﬁ,{ such that S reflects at 3.

2 If w < X are cardinals, then [A\J* = {X C X | |X]| = u}. [\]°H
is defined in the obvious way.

3 X — [k]y is the assertion that, for every function
F : [A\]* — 0, there is X € [A]* such that F"[X]* # 6.

4 K is a Jonsson cardinal if Kk — [K]S¥.

Remark
The question of whether AT — [AT]5% (or even AT — [AT]3,)
can hold if A is singular is a major open problem.
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Square-bracket partition relations

Theorem (Tryba, Woodin)
If k is regular and k — [K]s¥, Refl(k) holds.

Theorem (Todorcevic)
If k is regular and k — [k]2, then Refl(k) holds.

Theorem (Eisworth)

If X is singular and AT — [>\+]§\+, then every stationary subset of
AT reflects at arbitrarily high cofinalities.

Question (Eisworth)

Suppose X is a singular cardinal and Refl(A™) holds. Must it be
the case that every stationary subset of AT reflects at arbitrarily
high cofinalities?



Nw+1

Proposition
Suppose Refl(X,,11) holds. Then every stationary subset of N, 41
reflects at arbitrarily high cofinalities.



Nw+1

Proposition
Suppose Refl(X,,11) holds. Then every stationary subset of N, 41
reflects at arbitrarily high cofinalities.

Proof sketch

If S C Nyi1, let " ={B | S reflects at B}. Note that, since
every stationary set reflects, if S is stationary, then S’ must also
be stationary. Also note that if S C Sg‘:“, then §' C Si‘{jnl and
that, if S’ reflects at =y, then S also reflects at +.



Nw+1

Proposition
Suppose Refl(X,,11) holds. Then every stationary subset of N, 41
reflects at arbitrarily high cofinalities.

Proof sketch

If S C Nyi1, let " ={B | S reflects at B}. Note that, since
every stationary set reflects, if S is stationary, then S’ must also
be stationary. Also note that if S C Sg‘:“, then §' C Si‘{jnl and
that, if S’ reflects at =y, then S also reflects at +.

Now let S C W, 41 be stationary, and let 0 < n < w. To find
[6RS Sﬁ‘gl such that S reflects at 3, simply choose any 8 € S(".
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Approachability

Definition

Let u be a singular cardinal. Suppose 2* = u™, and let

3= (aq | @ < u*) be an enumeration of the bounded subsets of
ut.

1 A limit ordinal B < u* is approachable with respect to 3 if
there is a cofinal B C 3 such that otp(B) = cf(8) and, for
every a < 3, there is v < B such that BNa = a,.

2 The approachability property holds at u (AP,) if the set of
ordinals approachable with respect to @ contains a club in p*.

Remarks

e If  is a singular cardinal, then OJj, = AP, = all scales are
good.

o If n <w, Wy.pmy is strong limit for every m < n, Refl(N.n41)
holds, then APy, holds. This is not true of R 2.
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Theorem (Cummings, L-H)

Suppose there is an increasing sequence (k; | i < w - 2) of
supercompact cardinals. Then there is a forcing extension in
which Refl(Xy,.24+1) holds, but there is a stationary S C Sg(‘)"‘z“

Nw»2+1

that does not reflect at any ordinal in S5

Proof Sketch

Assume GCH. Let po = sup({k; | I < w}), and let

pu1 =sup({ki | i < w-2}). Let Py be the full-support iteration of
length w, Coll(w, < Kg) * Coll(kg, < k1) * Coll(k1, < K2) ... In
VPo, let P; be the full-support iteration of length w,

Coll(ug, < Kw) * Coll(Ky, < Kwt1) - .., and let P = Pg = Py.

In VE, we have po = Ry, (1g)Y = Ryt1, p1 = Ryea,

(L)Y =Nyoy1.
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closed, bounded subsets of u] all of whose members are

approachable with respect to 3. Q is ordered by end-extension.

Facts
1 (Shelah) Q is strongly (< w1)-strategically closed and forces
AP,,.
2 (Hayut) In VF*Q Refl(u]) holds.
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In VP*Q let S be the forcing whose conditions are functions
S 7y — 2 such that:

1y <pf.
2 If s(a) =1, then cf(a) = w.

3 Forevery B € 5“1 {a < v |s(a) =1} N is not stationary.

>ud’
S is ordered by reverse mclusion.
S is easily seen to preserve all cardinals and add a stationary
+
subset of S5 that does not reflect at any ordinals in S 1 . The

bulk of the proof, which will be omitted, lies in showing that itis
still the case that Refl(u]) holds after forcing with S. [
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Theorem (L-H)
Suppose there is a proper class of supercompact cardinals. Then
there is a class forcing extension in which, for every singular
cardinal . > R,,, we have the following:

1 Refl(u™).

2 There is a stationary subset S C Sﬁ,ﬁ that does not reflect at
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Theorem (L-H)

Suppose there is an w - 2-sequence of supercompact cardinals.
Then there is a forcing extension in which:

1 Reﬂ(Nw.2+1).

2 For every stationary S C SPuat

<Ry
such that T does not reflect at any ordinals in Sﬁ‘gjﬂ

, there is a stationary T C S
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Results without approachability

Theorem (L-H)

Suppose there is an w - 2-sequence of supercompact cardinals,
with po the supremum of the first w and w1 the supremum of the
entire sequence. Then there is a cardinal-preserving forcing
extension in which:

1 Refl(u]).

N

5 There is a stationary subset of S5 that does not reflect at
et

any ordinals in SZM'

0
3 AP, fails.

Theorem (L-H)

Under the same hypotheses, there is a forcing extension in which
(1),(2), and (3) hold as above, up = V2, and g1 = N 2.5.
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Question

s it consistent that Refl(¥,2, 1) holds and, for every stationary
S C N2, there is a stationary 7 C S that does not reflect at
arbitrarily high cofinalities?

Question
What about other patterns of reflection? For example:
e Is it consistent that Refl(N,,1) holds and there is a
stationary subset of N1 that reflects only at ordinals of
cofinality ¥, for n even?

e Is it consistent that Refl(N,.24+1) holds and there is a

stationary subset of Sﬁ‘““ that only reflects at ordinals in

Ry2t1-
SZNw+1 ’
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