Patterns of stationary reflection

Chris Lambie-Hanson

Einstein Institute of Mathematics Hebrew University of Jerusalem

Winter School in Abstract Analysis 2015 Set Theory & Topology Section Hejnice, Czech Republic

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ● ● ● ●

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Definition

Let β be an ordinal of uncountable cofinality.

1 $S \subseteq \beta$ is *stationary in* β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition

Let β be an ordinal of uncountable cofinality.

- **1** $S \subseteq \beta$ is *stationary in* β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.
- 2 If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S reflects at α if $S \cap \alpha$ is stationary in α .

Definition

Let β be an ordinal of uncountable cofinality.

- **1** $S \subseteq \beta$ is *stationary in* β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.
- 2 If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S reflects at α if $S \cap \alpha$ is stationary in α .
- If S is a stationary subset of β, then S reflects if there is α < β such that S reflects at α.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ● ● ● ●

Definition

Let β be an ordinal of uncountable cofinality.

- **1** $S \subseteq \beta$ is *stationary in* β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.
- 2 If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S reflects at α if $S \cap \alpha$ is stationary in α .
- If S is a stationary subset of β, then S reflects if there is α < β such that S reflects at α.
- 4 If κ is a cardinal of uncountable cofinality, $\operatorname{Refl}(\kappa)$ holds if every stationary subset of κ reflects.

Definition

Let β be an ordinal of uncountable cofinality.

- **1** $S \subseteq \beta$ is *stationary in* β if $S \cap C \neq \emptyset$ for every club $C \subseteq \beta$.
- 2 If S is a stationary subset of β and $\alpha < \beta$ has uncountable cofinality, then S reflects at α if $S \cap \alpha$ is stationary in α .
- If S is a stationary subset of β, then S reflects if there is α < β such that S reflects at α.
- 4 If κ is a cardinal of uncountable cofinality, $\operatorname{Refl}(\kappa)$ holds if every stationary subset of κ reflects.

If $\kappa < \lambda$ are infinite cardinals, with κ regular, then $S_{\kappa}^{\lambda} = \{ \alpha < \lambda \mid cf(\alpha) = \kappa \}.$

Remark

If $S \subseteq S_{\kappa}^{\lambda}$ and S reflects at β , then $cf(\beta) > \kappa$. Thus, if κ is regular and $S \subseteq S_{\kappa}^{\kappa^+}$, then S does not reflect.

・ロト・4回ト・モート・モート モークへや

Theorem

If \Box_{κ} holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.

Theorem

If \Box_{κ} holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.

Theorem (Jensen)

If V = L and κ is a regular, uncountable cardinal, then $\operatorname{Refl}(\kappa)$ holds *iff* κ is weakly compact.

Theorem

If \Box_{κ} holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.

Theorem (Jensen)

If V = L and κ is a regular, uncountable cardinal, then $\operatorname{Refl}(\kappa)$ holds *iff* κ is weakly compact.

Theorem (Solovay)

If μ is a singular limit of supercompact cardinals, then $\operatorname{Refl}(\mu^+)$ holds.

Theorem

If \Box_{κ} holds, then, for every stationary $S \subseteq \kappa^+$, there is a stationary $T \subseteq S$ that does not reflect.

Theorem (Jensen)

If V = L and κ is a regular, uncountable cardinal, then $\operatorname{Refl}(\kappa)$ holds *iff* κ is weakly compact.

Theorem (Solovay)

If μ is a singular limit of supercompact cardinals, then $\operatorname{Refl}(\mu^+)$ holds.

Theorem (Magidor)

If $\langle \kappa_n | n < \omega \rangle$ is an increasing sequence of supercompact cardinals, then there is a forcing extension in which $\kappa_n = \aleph_{n+1}$ for every $n < \omega$ and $\operatorname{Refl}(\aleph_{\omega+1})$ holds.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト ● ● ● ●

Definition

If λ is an infinite, regular cardinal and S ⊆ λ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular κ < λ, there is β ∈ S^λ_{>κ} such that S reflects at β.

Definition

- If λ is an infinite, regular cardinal and S ⊆ λ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular κ < λ, there is β ∈ S^λ_{>κ} such that S reflects at β.
- 2 If $\mu \leq \lambda$ are cardinals, then $[\lambda]^{\mu} = \{X \subseteq \lambda \mid |X| = \mu\}$. $[\lambda]^{<\mu}$ is defined in the obvious way.

Definition

- If λ is an infinite, regular cardinal and S ⊆ λ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular κ < λ, there is β ∈ S^λ_{>κ} such that S reflects at β.
- 2 If $\mu \leq \lambda$ are cardinals, then $[\lambda]^{\mu} = \{X \subseteq \lambda \mid |X| = \mu\}$. $[\lambda]^{<\mu}$ is defined in the obvious way.

3 $\lambda \to [\kappa]^{\mu}_{\theta}$ is the assertion that, for every function $F : [\lambda]^{\mu} \to \theta$, there is $X \in [\lambda]^{\kappa}$ such that $F "[X]^{\mu} \neq \theta$.

Definition

- If λ is an infinite, regular cardinal and S ⊆ λ is stationary, we say S reflects at arbitrarily high cofinalities if, for every regular κ < λ, there is β ∈ S^λ_{>κ} such that S reflects at β.
- 2 If $\mu \leq \lambda$ are cardinals, then $[\lambda]^{\mu} = \{X \subseteq \lambda \mid |X| = \mu\}$. $[\lambda]^{<\mu}$ is defined in the obvious way.

- 3 $\lambda \to [\kappa]^{\mu}_{\theta}$ is the assertion that, for every function $F : [\lambda]^{\mu} \to \theta$, there is $X \in [\lambda]^{\kappa}$ such that $F "[X]^{\mu} \neq \theta$.
- 4 κ is a Jónsson cardinal if $\kappa \to [\kappa]_{\kappa}^{<\omega}$.

Definition

- 1 If λ is an infinite, regular cardinal and $S \subseteq \lambda$ is stationary, we say *S* reflects at arbitrarily high cofinalities if, for every regular $\kappa < \lambda$, there is $\beta \in S^{\lambda}_{>\kappa}$ such that *S* reflects at β .
- 2 If $\mu \leq \lambda$ are cardinals, then $[\lambda]^{\mu} = \{X \subseteq \lambda \mid |X| = \mu\}$. $[\lambda]^{<\mu}$ is defined in the obvious way.
- 3 $\lambda \to [\kappa]^{\mu}_{\theta}$ is the assertion that, for every function $F : [\lambda]^{\mu} \to \theta$, there is $X \in [\lambda]^{\kappa}$ such that $F "[X]^{\mu} \neq \theta$.
- 4 κ is a Jónsson cardinal if $\kappa \to [\kappa]^{<\omega}_{\kappa}$.

Remark

The question of whether $\lambda^+ \to [\lambda^+]^{<\omega}_{\lambda^+}$ (or even $\lambda^+ \to [\lambda^+]^2_{\lambda^+}$) can hold if λ is singular is a major open problem.

Theorem (Tryba, Woodin) If κ is regular and $\kappa \to [\kappa]^{<\omega}_{\kappa}$, $\operatorname{Refl}(\kappa)$ holds.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (Tryba, Woodin) If κ is regular and $\kappa \to [\kappa]^{<\omega}_{\kappa}$, Refl(κ) holds. **Theorem** (Todorcevic)

If κ is regular and $\kappa \to [\kappa]^2_{\kappa}$, then $\operatorname{Refl}(\kappa)$ holds.

Theorem (Tryba, Woodin) If κ is regular and $\kappa \to [\kappa]^{<\omega}_{\kappa}$, $\operatorname{Refl}(\kappa)$ holds.

Theorem (Todorcevic) If κ is regular and $\kappa \to [\kappa]^2_{\kappa}$, then $\operatorname{Refl}(\kappa)$ holds.

Theorem (Eisworth)

If λ is singular and $\lambda^+ \to [\lambda^+]^2_{\lambda^+}$, then every stationary subset of λ^+ reflects at arbitrarily high cofinalities.

Theorem (Tryba, Woodin) If κ is regular and $\kappa \to [\kappa]_{\kappa}^{<\omega}$, Refl(κ) holds.

Theorem (Todorcevic) If κ is regular and $\kappa \to [\kappa]^2_{\kappa}$, then $\operatorname{Refl}(\kappa)$ holds.

Theorem (Eisworth)

If λ is singular and $\lambda^+ \to [\lambda^+]^2_{\lambda^+}$, then every stationary subset of λ^+ reflects at arbitrarily high cofinalities.

Question (Eisworth)

Suppose λ is a singular cardinal and $\operatorname{Refl}(\lambda^+)$ holds. Must it be the case that every stationary subset of λ^+ reflects at arbitrarily high cofinalities?

$\aleph_{\omega+1}$

Proposition

Suppose $\operatorname{Refl}(\aleph_{\omega+1})$ holds. Then every stationary subset of $\aleph_{\omega+1}$ reflects at arbitrarily high cofinalities.

$\aleph_{\omega+1}$

Proposition

Suppose $\operatorname{Refl}(\aleph_{\omega+1})$ holds. Then every stationary subset of $\aleph_{\omega+1}$ reflects at arbitrarily high cofinalities.

Proof sketch

If $S \subseteq \aleph_{\omega+1}$, let $S' = \{\beta \mid S \text{ reflects at } \beta\}$. Note that, since every stationary set reflects, if S is stationary, then S' must also be stationary. Also note that if $S \subseteq S_{\aleph_n}^{\aleph_{\omega+1}}$, then $S' \subseteq S_{>\aleph_n}^{\aleph_{\omega+1}}$ and that, if S' reflects at γ , then S also reflects at γ .

$\aleph_{\omega+1}$

Proposition

Suppose $\operatorname{Refl}(\aleph_{\omega+1})$ holds. Then every stationary subset of $\aleph_{\omega+1}$ reflects at arbitrarily high cofinalities.

Proof sketch

If $S \subseteq \aleph_{\omega+1}$, let $S' = \{\beta \mid S \text{ reflects at } \beta\}$. Note that, since every stationary set reflects, if *S* is stationary, then *S'* must also be stationary. Also note that if $S \subseteq S_{\aleph_n}^{\aleph_{\omega+1}}$, then $S' \subseteq S_{>\aleph_n}^{\aleph_{\omega+1}}$ and that, if *S'* reflects at γ , then *S* also reflects at γ . Now let $S \subseteq \aleph_{\omega+1}$ be stationary, and let $0 < n < \omega$. To find $\beta \in S_{\geq\aleph_n}^{\aleph_{\omega+1}}$ such that *S* reflects at β , simply choose any $\beta \in S^{(n)}$.

Definition

Let μ be a singular cardinal. Suppose $2^{\mu} = \mu^+$, and let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+ .

Definition

Let μ be a singular cardinal. Suppose $2^{\mu} = \mu^+$, and let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+ .

 A limit ordinal β < μ⁺ is approachable with respect to a if there is a cofinal B ⊆ β such that otp(B) = cf(β) and, for every α < β, there is γ < β such that B ∩ α = a_γ.

Definition

Let μ be a singular cardinal. Suppose $2^{\mu} = \mu^+$, and let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+ .

- A limit ordinal β < μ⁺ is approachable with respect to a if there is a cofinal B ⊆ β such that otp(B) = cf(β) and, for every α < β, there is γ < β such that B ∩ α = a_γ.
- 2 The approachability property holds at μ (AP_μ) if the set of ordinals approachable with respect to a contains a club in μ⁺.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

Let μ be a singular cardinal. Suppose $2^{\mu} = \mu^+$, and let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+ .

- A limit ordinal β < μ⁺ is approachable with respect to a if there is a cofinal B ⊆ β such that otp(B) = cf(β) and, for every α < β, there is γ < β such that B ∩ α = a_γ.
- 2 The approachability property holds at μ (AP_{μ}) if the set of ordinals approachable with respect to \vec{a} contains a club in μ^+ .

Remarks

• If μ is a singular cardinal, then $\Box^*_{\mu} \Rightarrow AP_{\mu} \Rightarrow$ all scales are good.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

Let μ be a singular cardinal. Suppose $2^{\mu} = \mu^+$, and let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu^+ \rangle$ be an enumeration of the bounded subsets of μ^+ .

- A limit ordinal β < μ⁺ is approachable with respect to a if there is a cofinal B ⊆ β such that otp(B) = cf(β) and, for every α < β, there is γ < β such that B ∩ α = a_γ.
- 2 The approachability property holds at μ (AP_{μ}) if the set of ordinals approachable with respect to \vec{a} contains a club in μ^+ .

Remarks

- If μ is a singular cardinal, then $\Box^*_{\mu} \Rightarrow AP_{\mu} \Rightarrow$ all scales are good.
- If n < ω, ℵ_{ω·m} is strong limit for every m ≤ n, Refl(ℵ_{ω·n+1}) holds, then AP_{ℵ_{ω·n}} holds. This is not true of ℵ_{ω²}.

$\aleph_{\omega \cdot 2+1}$

Theorem (Cummings, L-H)

Suppose there is an increasing sequence $\langle \kappa_i \mid i < \omega \cdot 2 \rangle$ of supercompact cardinals. Then there is a forcing extension in which $\operatorname{Refl}(\aleph_{\omega \cdot 2+1})$ holds, but there is a stationary $S \subseteq S_{\aleph_0}^{\aleph_{\omega \cdot 2+1}}$ that does not reflect at any ordinal in $S_{\geq\aleph_{\omega+1}}^{\aleph_{\omega \cdot 2+1}}$.

$\aleph_{\omega \cdot 2+1}$

Theorem (Cummings, L-H)

Suppose there is an increasing sequence $\langle \kappa_i \mid i < \omega \cdot 2 \rangle$ of supercompact cardinals. Then there is a forcing extension in which $\operatorname{Refl}(\aleph_{\omega \cdot 2+1})$ holds, but there is a stationary $S \subseteq S_{\aleph_0}^{\aleph_{\omega \cdot 2+1}}$ that does not reflect at any ordinal in $S_{\geq\aleph_{\omega+1}}^{\aleph_{\omega \cdot 2+1}}$.

Proof Sketch

Assume GCH. Let $\mu_0 = \sup(\{\kappa_i \mid i < \omega\})$, and let $\mu_1 = \sup(\{\kappa_i \mid i < \omega \cdot 2\})$. Let \mathbb{P}_0 be the full-support iteration of length ω , $\operatorname{Coll}(\omega, < \kappa_0) * \operatorname{Coll}(\kappa_0, < \kappa_1) * \operatorname{Coll}(\kappa_1, < \kappa_2) \dots$ In $V^{\mathbb{P}_0}$, let \mathbb{P}_1 be the full-support iteration of length ω , $\operatorname{Coll}(\mu_0^+, < \kappa_\omega) * \operatorname{Coll}(\kappa_\omega, < \kappa_{\omega+1}) \dots$, and let $\mathbb{P} = \mathbb{P}_0 * \mathbb{P}_1$.

$\aleph_{\omega \cdot 2+1}$

Theorem (Cummings, L-H)

Suppose there is an increasing sequence $\langle \kappa_i \mid i < \omega \cdot 2 \rangle$ of supercompact cardinals. Then there is a forcing extension in which $\operatorname{Refl}(\aleph_{\omega \cdot 2+1})$ holds, but there is a stationary $S \subseteq S_{\aleph_0}^{\aleph_{\omega \cdot 2+1}}$ that does not reflect at any ordinal in $S_{\geq\aleph_{\omega+1}}^{\aleph_{\omega \cdot 2+1}}$.

Proof Sketch

Assume GCH. Let $\mu_0 = \sup(\{\kappa_i \mid i < \omega\})$, and let $\mu_1 = \sup(\{\kappa_i \mid i < \omega \cdot 2\})$. Let \mathbb{P}_0 be the full-support iteration of length ω , $\operatorname{Coll}(\omega, < \kappa_0) * \operatorname{Coll}(\kappa_0, < \kappa_1) * \operatorname{Coll}(\kappa_1, < \kappa_2) \dots$ In $V^{\mathbb{P}_0}$, let \mathbb{P}_1 be the full-support iteration of length ω , $\operatorname{Coll}(\mu_0^+, < \kappa_\omega) * \operatorname{Coll}(\kappa_\omega, < \kappa_{\omega+1}) \dots$, and let $\mathbb{P} = \mathbb{P}_0 * \mathbb{P}_1$. In $V^{\mathbb{P}}$, we have $\mu_0 = \aleph_\omega$, $(\mu_0^+)^V = \aleph_{\omega+1}$, $\mu_1 = \aleph_{\omega \cdot 2}$, $(\mu_1^+)^V = \aleph_{\omega \cdot 2+1}$.

In $V^{\mathbb{P}}$, let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu_1^+ \rangle$ be an enumeration of the bounded subsets of μ_1^+ . Let \mathbb{Q} be the forcing poset whose conditions are closed, bounded subsets of μ_1^+ all of whose members are approachable with respect to \vec{a} . \mathbb{Q} is ordered by end-extension.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In $V^{\mathbb{P}}$, let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu_1^+ \rangle$ be an enumeration of the bounded subsets of μ_1^+ . Let \mathbb{Q} be the forcing poset whose conditions are closed, bounded subsets of μ_1^+ all of whose members are approachable with respect to \vec{a} . \mathbb{Q} is ordered by end-extension.

Facts

1 (Shelah) \mathbb{Q} is strongly (< μ_1)-strategically closed and forces AP_{μ_1} .

In $V^{\mathbb{P}}$, let $\vec{a} = \langle a_{\alpha} \mid \alpha < \mu_1^+ \rangle$ be an enumeration of the bounded subsets of μ_1^+ . Let \mathbb{Q} be the forcing poset whose conditions are closed, bounded subsets of μ_1^+ all of whose members are approachable with respect to \vec{a} . \mathbb{Q} is ordered by end-extension.

Facts

1 (Shelah) \mathbb{Q} is strongly (< μ_1)-strategically closed and forces AP_{μ_1} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2 (Hayut) In $V^{\mathbb{P}*\mathbb{Q}}$, $\operatorname{Refl}(\mu_1^+)$ holds.

In $V^{\mathbb{P}*\mathbb{Q}}$, let \mathbb{S} be the forcing whose conditions are functions $s: \gamma \to 2$ such that:

In $V^{\mathbb{P}*\mathbb{Q}}$, let \mathbb{S} be the forcing whose conditions are functions $s: \gamma \rightarrow 2$ such that:

<ロト < 団ト < 団ト < 団ト < 団ト < 団 < つへの</p>

 $\ensuremath{\mathbb{S}}$ is ordered by reverse inclusion.

In $V^{\mathbb{P}*\mathbb{Q}}$, let \mathbb{S} be the forcing whose conditions are functions $s:\gamma\to 2$ such that:

- 1 $\gamma < \mu_1^+$. 2 If $s(\alpha) = 1$, then $cf(\alpha) = \omega$.
- 3 For every $\beta \in S^{\mu_1^+}_{\geq \mu_0^+}$, $\{\alpha < \gamma \mid s(\alpha) = 1\} \cap \beta$ is not stationary.

 $\ensuremath{\mathbb{S}}$ is ordered by reverse inclusion.

 \mathbb{S} is easily seen to preserve all cardinals and add a stationary subset of $S_{\omega}^{\mu_1^+}$ that does not reflect at any ordinals in $S_{\geq \mu_0^+}^{\mu_1^+}$. The bulk of the proof, which will be omitted, lies in showing that it is still the case that $\operatorname{Refl}(\mu_1^+)$ holds after forcing with \mathbb{S} .

Some variations

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (L-H)

Suppose there is a proper class of supercompact cardinals. Then there is a class forcing extension in which, for every singular cardinal $\mu > \aleph_{\omega}$, we have the following:

- 1 Refl (μ^+) .
- 2 There is a stationary subset $S \subseteq S^{\mu^+}_{\omega}$ that does not reflect at any ordinals in $S^{\mu^+}_{\geq\aleph_{\omega+1}}$.

Some variations

Theorem~(L-H)

Suppose there is a proper class of supercompact cardinals. Then there is a class forcing extension in which, for every singular cardinal $\mu > \aleph_{\omega}$, we have the following:

- 1 Refl (μ^+) .
- 2 There is a stationary subset $S \subseteq S^{\mu^+}_{\omega}$ that does not reflect at any ordinals in $S^{\mu^+}_{\geq\aleph_{\omega+1}}$.

Theorem (L-H)

Suppose there is an $\omega \cdot 2$ -sequence of supercompact cardinals. Then there is a forcing extension in which:

- 1 Refl($\aleph_{\omega \cdot 2+1}$).
- 2 For every stationary $S \subseteq S_{<\aleph\omega}^{\aleph\omega\cdot 2+1}$, there is a stationary $T \subseteq S$ such that T does not reflect at any ordinals in $S_{\geq\aleph\omega+1}^{\aleph\omega\cdot 2+1}$.

Results without approachability

< ロ > < 母 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (L-H)

Suppose there is an $\omega \cdot 2$ -sequence of supercompact cardinals, with μ_0 the supremum of the first ω and μ_1 the supremum of the entire sequence. Then there is a cardinal-preserving forcing extension in which:

- 1 Refl (μ_1^+) .
- 2 There is a stationary subset of $S_{\omega}^{\mu_1^+}$ that does not reflect at any ordinals in $S_{\geq \mu_0^+}^{\mu_1^+}$.
- 3 AP_{μ_1} fails.

Results without approachability

Theorem (L-H)

Suppose there is an $\omega \cdot 2$ -sequence of supercompact cardinals, with μ_0 the supremum of the first ω and μ_1 the supremum of the entire sequence. Then there is a cardinal-preserving forcing extension in which:

- 1 Refl (μ_1^+) .
- 2 There is a stationary subset of $S_{\omega}^{\mu_1^+}$ that does not reflect at any ordinals in $S_{\geq \mu_0^+}^{\mu_1^+}$.
- 3 AP_{μ_1} fails.

Theorem (L-H)

Under the same hypotheses, there is a forcing extension in which (1),(2), and (3) hold as above, $\mu_0 = \aleph_{\omega^2}$, and $\mu_1 = \aleph_{\omega^2 \cdot 2}$.

Question

Is it possible to bring the result of the previous theorem down to $\aleph_{\omega^2+1}?$

Question

Is it possible to bring the result of the previous theorem down to $\aleph_{\omega^2+1}?$

Question

Is it consistent that $\operatorname{Refl}(\aleph_{\omega^2+1})$ holds and, for every stationary $S \subseteq \aleph_{\omega^2+1}$, there is a stationary $T \subseteq S$ that does not reflect at arbitrarily high cofinalities?

Question

Is it possible to bring the result of the previous theorem down to $\aleph_{\omega^2+1}?$

Question

Is it consistent that $\operatorname{Refl}(\aleph_{\omega^2+1})$ holds and, for every stationary $S \subseteq \aleph_{\omega^2+1}$, there is a stationary $T \subseteq S$ that does not reflect at arbitrarily high cofinalities?

Question

What about other patterns of reflection? For example:

Question

Is it possible to bring the result of the previous theorem down to $\aleph_{\omega^2+1}?$

Question

Is it consistent that $\operatorname{Refl}(\aleph_{\omega^2+1})$ holds and, for every stationary $S \subseteq \aleph_{\omega^2+1}$, there is a stationary $T \subseteq S$ that does not reflect at arbitrarily high cofinalities?

Question

What about other patterns of reflection? For example:

 Is it consistent that Refl(ℵ_{ω+1}) holds and there is a stationary subset of ℵ_{ω+1} that reflects only at ordinals of cofinality ℵ_n for n even?

Question

Is it possible to bring the result of the previous theorem down to $\aleph_{\omega^2+1}?$

Question

Is it consistent that $\operatorname{Refl}(\aleph_{\omega^2+1})$ holds and, for every stationary $S \subseteq \aleph_{\omega^2+1}$, there is a stationary $T \subseteq S$ that does not reflect at arbitrarily high cofinalities?

Question

What about other patterns of reflection? For example:

- Is it consistent that Refl(ℵ_{ω+1}) holds and there is a stationary subset of ℵ_{ω+1} that reflects only at ordinals of cofinality ℵ_n for n even?
- Is it consistent that $\operatorname{Refl}(\aleph_{\omega\cdot 2+1})$ holds and there is a stationary subset of $S_{\omega}^{\aleph_{\omega\cdot 2+1}}$ that only reflects at ordinals in $S_{\geq\aleph_{\omega+1}}^{\aleph_{\omega\cdot 2+1}}$?

Thank you

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●